

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Spring 2018
Homework 4 – Lists (and More)

Assignment: Homework 4 – Lists (and More)
Due Date: Friday, March 9th, 2018 by 8:59:59 PM
Value: 40 points

Collaboration: For Homework 4, collaboration is not allowed – you must
work individually. You may still come to office hours for help, but you may not
work with any other CMSC 201 students.

Make sure that you have a complete file header comment at the top of each
file, and that all of the information is correctly filled out.

File: FILENAME.py

Author: YOUR NAME

Date: THE DATE

Section: YOUR DISCUSSION SECTION NUMBER

E-mail: YOUR_EMAIL@umbc.edu

Description:

DESCRIPTION OF WHAT THE PROGRAM DOES

CMSC 201 – Computer Science I for Majors Page 2

Instructions
For each of the questions below, you are given a problem that you must solve
or a task you must complete.

You should already be familiar with one-way, two-way, and multi-way
decision structures. You should also be familiar with while loops and lists.

This assignment will focus on using lists to store information, as well as using
while loops to traverse these lists and decision structures to control the flow
of the program.

At the end, your Homework 4 files must run without any errors.

NOTE: Your filenames for this homework
must match the given ones exactly.
And remember, filenames are case sensitive!

Additional Instructions – Creating the hw4 Directory
During the semester, you’ll want to keep your different Python programs
organized, organizing them in appropriately named folders (also known as
directories).

Just as you did for previous homeworks, you should create a directory to
store your Homework 4 files. We recommend calling it hw4, and creating it

inside the Homeworks directory inside the 201 directory.

If you need help on how to do this, refer back to the detailed instructions in
Homework 1. (You don’t need to make a separate folder for each file. You
should store all of the Homework 4 files in the same hw4 folder.)

CMSC 201 – Computer Science I for Majors Page 3

Coding Standards
Prior to this assignment, you should re-read the Coding Standards, available
on Blackboard under “Assignments” and linked on the course website at the
top of the “Assignments” page.

For now, you should pay special attention to the sections about:

 Naming Conventions

 Use of Whitespace

 Comments (specifically, File Header Comments)

 Line Length

 Constants
o For Homework 4, you must use constants instead of magic

numbers!!! Magic strings are also forbidden!!!!!!

 Make sure to read the last page of the Coding Standards document,
which prohibits the use of certain tools and Python keywords

Additional Specifications

For this assignment, you must use main() as seen in your lab2.py file,

and as discussed in class.

For this assignment, you should pay attention to each problem’s instructions
on using “input validation.” For example, the user may enter a negative
value, but your program may require a positive value. Make sure to follow
each part’s instructions about input validation.

If the user enters a different type of data than what you asked for, your
program may crash. This is acceptable.

Do note that you do not have to use lists for every part of this homework, only
those where it is explicitly specified. However, you may find other parts are
easier with the use of lists.

CMSC 201 – Computer Science I for Majors Page 4

Questions
Each question is worth the indicated number of points. Following the coding
standards is worth 4 points. If you do not have complete file headers and
correctly named files, you will lose points.

hw4_part1.py (Worth 6 points)

For this part of the homework you will write code to draw an isosceles right
triangle. (A right triangle in which the height and base are the same size.)

Your program should prompt the user for these inputs, in exactly this order:

1. The height of their triangle
2. The symbol the triangle will be outlined in
3. The symbol the triangle will be filled with

For these inputs, you can assume the following:

 The height will be a positive integer (greater than zero)

 The symbols will be a single character each

Use the first symbol to draw an isosceles right triangle of the height chosen
by the user. The triangle should be filled in with the second symbol, in the
cases in which there is interior space to fill.

(See the next page for sample output.)

CMSC 201 – Computer Science I for Majors Page 5

Here is some sample output for hw4_part1.py, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python hw4_part1.py

Please enter the height of the triangle: 1

Please enter a symbol for the triangle outline: W

Please enter a symbol for the triangle fill: m

W

bash-4.1$ python hw4_part1.py

Please enter the height of the triangle: 3

Please enter a symbol for the triangle outline: Q

Please enter a symbol for the triangle fill: q

Q

QQ

QQQ

bash-4.1$ python hw4_part1.py

Please enter the height of the triangle: 7

Please enter a symbol for the triangle outline: x

Please enter a symbol for the triangle fill: O

x

xx

xOx

xOOx

xOOOx

xOOOOx

xxxxxxx

(NOTE: Because the text is taller than it is wide, the triangle may not appear
to be an isosceles right triangle, but the number of characters in the height
and the width are still the same.)

HINT: You can keep the print() function from printing on a new line by

using end="" at the end: print("Hello", end=""). If you do want to

print a new line, you can call print without an argument: print().

CMSC 201 – Computer Science I for Majors Page 6

hw4_part2.py (Worth 6 points)

Create a program that will have the user enter a list of names of the students
enrolled in a course. The user can continue entering names indefinitely,
stopping only when they enter the sentinel value “QUIT”.

If the user enters a name that they have already entered (and therefore
already exists in the list), the user must be notified, and the name should not
be added to the list again.

Once the user has completed the list, the program should print out the total
number of students enrolled in the course. It should then print out whether
the course is over enrolled, under enrolled, or perfectly enrolled, based on a
desired class size of 7 students. The program must make use of a list to
accomplish these tasks!

(See the next page for sample output.)

CMSC 201 – Computer Science I for Majors Page 7

Here is some sample output for hw4_part2.py, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python hw4_part2.py

Please enter a student name ('QUIT' to stop): Anna

Please enter a student name ('QUIT' to stop): Harsh

Please enter a student name ('QUIT' to stop): Chet

Please enter a student name ('QUIT' to stop): Mary

Please enter a student name ('QUIT' to stop): Parth

Please enter a student name ('QUIT' to stop): Katie

Please enter a student name ('QUIT' to stop): Michael

Please enter a student name ('QUIT' to stop): QUIT

There are 7 students in the course.

The course is perfectly enrolled!

bash-4.1$ python hw4_part2.py

Please enter a student name ('QUIT' to stop): Alex

Please enter a student name ('QUIT' to stop): Alexis

Please enter a student name ('QUIT' to stop): Alexander

Please enter a student name ('QUIT' to stop): Alex

The student Alex is already enrolled.

Please enter a student name ('QUIT' to stop): Alice

Please enter a student name ('QUIT' to stop): Al

Please enter a student name ('QUIT' to stop): Alice

The student Alice is already enrolled.

Please enter a student name ('QUIT' to stop): QUIT

There are 5 students in the course.

The course is under enrolled!

bash-4.1$ python hw4_part2.py

Please enter a student name ('QUIT' to stop): QUIT

There are 0 students in the course.

The course is under enrolled!

bash-4.1$ python hw4_part2.py

Please enter a student name ('QUIT' to stop): quit

Please enter a student name ('QUIT' to stop): stop

Please enter a student name ('QUIT' to stop): exit

Please enter a student name ('QUIT' to stop): QUIT

There are 3 students in the course.

The course is under enrolled!

CMSC 201 – Computer Science I for Majors Page 8

hw4_part3.py (Worth 10 points)

Write a program that asks the user to enter a password, and then checks it
for a few different requirements before approving it as secure and repeating
the final password to the user.

The program must re-prompt the user until they provide a password that
satisfies all of the conditions. It must also tell the user each of the conditions
they failed, and how to fix it.
If there is more than one thing wrong (e.g., no lowercase, and longer than 20
characters), the program must print out all of the things that are wrong, and
how to fix them.

The program follows these rules for passwords:

1. The password must contain at least one lowercase letter.
2. The password must contain at least one uppercase letter.
3. The password must be between 6 and 20 characters, inclusive.

a. If the password is between 6 and 13 characters, inclusive, it must
contain a “7” somewhere in the password.

b. If the password is between 14 and 20 characters, inclusive, it
must contain a “2” somewhere in the password.

4. The password cannot contain the characters “0” and “O” (zero and
uppercase o) at the same time. (It can contain a “0” or an “O”, just not
both at the same time. It may also contain neither.)

For this part of the homework, you must have an in-line comment at the top
of each of your program’s individual if, elif, and else statements,

explaining what is being checked by that conditional.

(HINT: Think carefully about what your conditionals should look like. If
necessary, draw a truth table to help figure out what different inputs will do.
Using a Boolean flag will also likely make this easier.)

(PRO TIP: The livecoding files posted for Lecture 7 may be a good place to
start if you’re stuck.)

(See the next page for sample output.)

CMSC 201 – Computer Science I for Majors Page 9

Here is some sample output for hw4_part3.py, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python hw4_part3.py

Please enter a password: dogs

Password must have an uppercase character

Password must be at least 6 characters

Please enter a password: DOGS

Password must have a lowercase character

Password must be at least 6 characters

Please enter a password: Dogs

Password must be at least 6 characters

Please enter a password: Doggos

Shorter passwords must contain a 7

Please enter a password: 7Doggos

Thank you for picking the secure password 7Doggos

bash-4.1$ python hw4_part3.py

Please enter a password: thisMustBeSecureItsLongAlso27

Password must be no longer than 20 characters

Please enter a password: abcdefghijklmnopqrst

Password must have an uppercase character

Longer passwords must contain a 2

Please enter a password: 2and7EQUALSnine

Thank you for picking the secure password 2and7EQUALSnine

bash-4.1$ python hw4_part3.py

Please enter a password: O_and_0

Shorter passwords must contain a 7

Password cannot contain a O and a 0 at the same time

Please enter a password: O_and_7

Thank you for picking the secure password O_and_7

bash-4.1$ python hw4_part3.py

Please enter a password: greatPassword7!

Longer passwords must contain a 2

Please enter a password: greatPassword2!

Thank you for picking the secure password greatPassword2!

CMSC 201 – Computer Science I for Majors Page 10

hw4_part4.py (Worth 6 points)

This program allows the user to create an itinerary that will give them a
breakdown of each location on a planned trip, including the number of days
that will be spent at each place.
The program must use two separate lists to accomplish this!

The user can continue entering locations indefinitely, stopping only when they
enter the sentinel value “END”. After entering each location, they should be
asked how many days they plan to spend there.

After their list is complete, it should be printed back out to them, with each
line containing the location and the number of days spent there. After printing
out the entire list in the order entered, your program must also print out the
total number of days the user will spend on their trip.

Here is some sample output with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python hw4_part4.py

Please enter a destination, or 'END' to stop: Baltimore

Please enter the day(s) spent there: 1

Please enter a destination, or 'END' to stop: Philadelphia

Please enter the day(s) spent there: 3

Please enter a destination, or 'END' to stop: New York

Please enter the day(s) spent there: 5

Please enter a destination, or 'END' to stop: Quebec

Please enter the day(s) spent there: 2

Please enter a destination, or 'END' to stop: Vancouver

Please enter the day(s) spent there: 7

Please enter a destination, or 'END' to stop: END

Here is your itinerary:

1 days spent at: Baltimore

3 days spent at: Philadelphia

5 days spent at: New York

2 days spent at: Quebec

7 days spent at: Vancouver

Total trip time is 18 days

CMSC 201 – Computer Science I for Majors Page 11

hw4_part5.py (Worth 8 points)

Finally, create a program that determines whether a subject can be studied or
not.

First, the program must ask the user to enter ten different subjects, and store
those subjects in a list.
The program must make use of a list to accomplish these tasks!

Once the list contains the ten subjects, the program must use the following two
rules to determine how each subject should be printed back out to the user.

1. If the subject ends in “ology” print out:
 You can study SUBJECT

2. Otherwise, simply print the subject:
 SUBJECT is not real!

For these inputs, you can assume the following:

 The words entered will be in all lowercase

 The words entered will be at least 5 characters long

(HINT: You will want to use string slicing to check if the string ends with
“ology”. Review Lecture 09 (Strings) for details on how to use slicing.)

You may not use any built-in Python methods, such as endswith(), to

check if the string ends in “ology” or not.

(See the next page for sample output.)

CMSC 201 – Computer Science I for Majors Page 12

Here is some sample output for hw4_part5.py, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python hw4_part5.py

Please enter a subject of study: dragonology

Please enter a subject of study: biology

Please enter a subject of study: ology

Please enter a subject of study: astropsychology

Please enter a subject of study: pteridology

Please enter a subject of study: computer science

Please enter a subject of study: english

Please enter a subject of study: biology rocks

Please enter a subject of study: sleeping

Please enter a subject of study: running

You can study dragonology

You can study biology

You can study ology

You can study astropsychology

You can study pteridology

computer science is not real!

english is not real!

biology rocks is not real!

sleeping is not real!

running is not real!

CMSC 201 – Computer Science I for Majors Page 13

Submitting
Once your hw4_part1.py, hw4_part2.py, hw4_part3.py,

hw4_part4.py, and hw4_part5.py files are complete, it is time to turn

them in with the submit command. (You may also turn in individual files as

you complete them. To do so, only submit those files that are complete.)

You must be logged into your account on GL, and you must be in the same
directory as your Homework 4 Python files. To double-check you are in the
directory with the correct files, you can type ls.

linux1[3]% ls

hw4_part1.py hw4_part3.py hw4_part5.py

hw4_part2.py hw4_part4.py

linux1[4]% █

To submit your Homework 4 Python files, we use the submit command,

where the class is cs201, and the assignment is HW4. Type in (all on one

line) submit cs201 HW4 hw4_part1.py hw4_part2.py

hw4_part3.py hw4_part4.py hw4_part5.py and press enter.

linux1[4]% submit cs201 HW4 hw4_part1.py hw4_part2.py

hw4_part3.py hw4_part4.py hw4_part5.py

Submitting hw4_part1.py...OK

Submitting hw4_part2.py...OK

Submitting hw4_part3.py...OK

Submitting hw4_part4.py...OK

linux1[5]% █

If you don’t get a confirmation like the one above, check that you have not
made any typos or errors in the command.

You can check that your homework was submitted by following the directions
in Homework 0. Double-check that you submitted your homework correctly,
since an empty file will result in a grade of zero for this assignment.

